- Title
- Strong edge-magic graphs of maximum size
- Creator
- MacDougall, James A.; Wallis, W. D.
- Relation
- Discrete Mathematics Vol. 308, Issue 13, p. 2756-2763
- Publisher Link
- http://dx.doi.org/10.1016/j.disc.2006.12.009
- Publisher
- Elsevier
- Resource Type
- journal article
- Date
- 2008
- Description
- An edge-magic total labeling on G is a one-to-one map λ from V(G)∪E(G) onto the integers 1,2,...,|V(G)∪E(G)| with the property that, given any edge (x,y), λ(x)+λ(x,y)+λ(y)=k for some constant k. The labeling is strong if all the smallest labels are assigned to the vertices. Enomoto et al. proved that a graph admitting a strong labeling can have at most 2|V(G)|-3 edges. In this paper we study graphs of this maximum size.
- Subject
- edge-magic; graphs; total labeling
- Identifier
- uon:4997
- Identifier
- http://hdl.handle.net/1959.13/42852
- Identifier
- ISSN:0012-365X
- Full Text
- Reviewed
- Hits: 2866
- Visitors: 3596
- Downloads: 442
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Author final version | 543 KB | Adobe Acrobat PDF | View Details Download |